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CONVECTIVE WALL PLUME:
HIGHER ORDER ANALYSIS

NOOR AFZAL
Department of Mechanical Engineering, Aligarh Muslim University, Aligarh, India

(Received 2 January 1979 and in revised form 21 April 1979)

Abstract—A study of natural convection flow arising from a steady line thermal source embedded at the
leading edge of a vertical surface is carried out for moderately large values of Grashof number by the method
of matched asymptotic expansions. The first and second order boundary-layer equations are studied when
the medium is bounded by an infinite horizontal surface placed at an arbitrary distance below the convective
wall plume. The numerical solutions are obtained for two fluids, namely air and water. It is shown that the
structure of the convected wall plume depends strongly on the location of horizontal plane. Separate
results for prescribed wall temperature and for an adiabatic convective wall plume are presented.
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NOMENCLATURE

nondimensional distance of horizontal
plane from the source;

coefficient of skin friction, 27,,/pU?;

first and second order stream functions
defined by (18a) and (36);

gravitational acceleration;

first and second order temperatures defined
by (18a) and (36);

Grashof number, g8 T, L*/v*;

local Grashof number, g8 T, x*/v*;
pnondimensional global heat flux defined by
(6);

first and second order global heat flux
defined by (11);

thermal conductivity of the fluid;
reference length;

global Nusselt number, Q/K(T,, — T,);
local Nusselt number, xq,,(x)/K(T, — T,);
conductive heat flux from wall plume;
nondimensional and dimensional heat in-
put by the thermal source;

global heat flux from convective wall
plume;

recovery factor, (T, — T,,)/T,;
temperature;

adiabatic wall temperature;

reference temperature, Q/KJ, ;

prescribed wall temperature,
T, + T,Grs %5

characteristic free convection speed,
vGri®/L;

value of x where displacement speed
vanishes ;

coordinates along the wall plume measured
from heat source and normal to it;
boundary-layer variable, yGrt/>,

Greek symbols

ﬁ’

8,

volumetric thermal expansion coefficient ;
local perturbation parameter, Gr; 1/5;
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€1, reference perturbation parameter, Gr ™'/
b, nondimensional temperature,
(T- T.)Gr'*|T,;
¢1,¢,, first and second order temperatures in
inner region;

A unspecified eigen constant;

P, fluid density;

g, Prandtl number;

Ty wall shear;

v, nondimensional stream function;

Wy,¥,, first and second order stream function in
the inner region;

¥,, ¥,, first and second order stream function in
the outer region;

v, kinematic viscosity.

1. INTRODUCTION

THE FLOW induced by buoyancy due to a horizontal
line source embedded at the leading edge of vertical
plate in a fluid which is otherwise at rest is studied for
moderately large values of Grashof numbers by the
method of matched asymptotic expansions. The prob-
lem is of interest in numerous engineering appli-
cations, e.g. electronic circuitry where electronic de-
vices mounted on a vertical surface dissipate energy at
constant rate, production processes where selective
and local heating gives rise to a constant thermal input
over a surface. The similarity solutions for the classical
laminar boundary layer equations for a convective
adiabatic wall plume have been studied by Zimin and
Lyakhov [1] and Jaluria and Gebhart [2]. Measure-
ments for turbulent wall plume have been reported by
Grella and Faeth [3].

The overall objectives of the present work on
convective wall plume are three-fold. Firstly, to ana-
lyse the Navier—Stokes equations for moderately large
values of Grashof number by the method of matched
asymptotic expansions. In particular the second order
corrections to [1] and [2] for moderately large
Grashof numbers have been predicted. Secondly, the
effects of restricted domain, when a horizontal infinite
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plane boundary is introduced at an arbitrary distance
below the convected wall plume, have been investi-
gated. It is shown that outer layer entrainment and the
boundary-layer flow pattern is considerably different
as the buoyancy layer can no longer entrain the fluid
from all parts of an infinite domain. Thirdly, to study
the global heat transfer through the integration of
energy equation for a large control surface enclosing
the leading edge of the plate embedding the source
following a procedure analogous to Imai [4].

The results for the two cases of adiabatic wall and
prescribed wall temperature of convective wall plume
are presented separately. For the adiabatic wall case
the adiabatic wall temperature and recovery factor are
determined and for the case of prescribed wall tem-
perature the local and global heat transfer are
estimated.

2. GOVERNING EQUATIONS

Let a horizontal line thermal source of heat, with a
steady input Q,, embedded at the leading edge of
vertical plate, be placed in an extensive unstratified
fluid of uniform temperature. The vorticity transport
and energy equations in nondimensional form under
usual Boussinesq approximation are

o

cy

A i
(wy;f; - wxg;)vzw +Gr2eviy 4 oo )

17 Y .
(wv A lj’\*é‘)ﬁb + Gr—»Z;SG—‘led) =0. {2)
T éx 8y
The no slip boundary condition on the vertical plate

is
y=0y=y,=0 (3)

and that of the prescribed wall temperature or the
adiabatic wall is

, o
y=0,¢ = (T, = T)Gr'/T, or=-=0. (4)
ay

Far away from the plate the ambient conditions are
by =0, ¢—0. )
The global heat flux @ is given by {see Appendix)

P

Q(x) = KTJ,J = Gr'? [UJ\ pypdy — Grm2°
0

X Jw ¢.dy + O(Gr‘z's}}. 6)

3, ASYMPTOTIC ANALYSIS

The asymptotic solutions of the problem formulated
in section 2 are studied for large values of Grashof
numbers by the method of matched asymptotic expan-
sions. We seek two limits and two corresponding
asymptotic expansions which describe the flow region
close to the wall and away from it. The length scales for
these flow regions are of order Gr~!/* and unity. The
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outer limit is defined as x and v fixed as Gr — » and
the outer layer, essentially inviscid, can be studied in
the term of outer expansions

W= Wlx, v+ 6 Walx, ) + Oleyd
b =D (x, v} + o DUx, v+ Oy i7h

where ¢, and &, are the gauge functions, to be
determined. The inner region close to the wall, where
diffusive effects are important, is characterized by
buoyancy forces. An order of magnitude analysis leads
to the following inner variable

Y= yGrit (8)
and the inner limit is x, Yfixed for Gv — ». The inner
asymptotic expansions are

o= Grm Y (x, Y4 Apgaix, V) O(A)]

{9}
((5 = (151()(« }’j + A;%(Y, Vg O{AES,
where A, and A, are the gauge functions. The match-

ing of the outer and inner expansions in the overlap
region leads to

g =A =G P {10y

The expansion for global heat flux may also be written
as

J=J, + ey + Oy (i)

(1) First order problem
The solution to the leading terms in outer expan-
sions (7) satisfying the outer boundary condition {5}

Yix, ) =Pylx, vy =0 (12}

shows that there is no flow or temperature induced in
the outer layer, when Grashof numbers are large. The
trivial solution fails to explain the convection of heat
released by the source. The nonuniformity, near the
plate, can be analysed by inner expansions (9). Its
leading terms satisfy the following equations:
WorWier — Wiy + Wy F =0 (13)
Yiyhie — ¥ibyr + 0 ey =0 {14

Equation (13) has been written after integrating it once
with respect to Y and the resulting function of x set
equal to zero. The boundary conditions and the
matching conditions are

Y=0, ¢y =0,y =0 ¢; =T, ~ T,)Gr' %1, or

¢y =10 t15)
Yoo o, iy = O, by 0. (16)
The global heat flux condition gives
J,:rr( Wiy dY, 7
o

[N

and the heat input from the line source @, = KT.J;.
The similarity variables, that are slightly different from

[1] and [2],
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Uy = x5, &y = x"¥3g,(n), n = Y/x*5, (18)

imply that the temperature of wall is assumed to

depend upon x as
T (x) = Ty, + Gr=V3T,x~ %3, (19)

Introducing the similarity variables in equations (13)-
(17) we get

(20)
@1

TS5 +9.=0,
g’l’ + %a(flgl)l = 0’
HO) =f10)=0, ¢,0)=1 orgi(0}=0,

(22a,b,¢)

Fi(o0) = ga(00) =0, (23a,b)

Jl=affﬂgﬂm (24)
0

The equations are identical with two dimensional
buoyant plume [5,6] but the boundary conditions
(22b) and {22¢c) are different. An integration of (21)
along with (23a) gives

gy +30f9, =0 (25a)

Using the boundary condition (22a) we get
9:00)=0 (25b)

implying that, to the lowest order, the vertical plate is
always adiabatic. However, our study of second order
effects for prescribed wall temperature predicts finite
heat transfer and thus cannot be regarded as adiabatic.
The matching of the leading terms for stream function
in inner and outer expansions (7) and (9) leads to

M|
ax T Ox

$fil0)x ™25, (26)

il

y=0 Y=0

the required boundary condition for the second order
outer problem. This shows that outer flow is sink-like
in character.

(i) Second order problem

In the outer layer, the solution of the second order
term for temperature is ®,(x, y) = 0 and the vorticity
equation leads to an irrotational type flow governed
by

Vi, = 0. 27)

The boundary condition (26) provided by matching
and the requirement of flow symmetry are

¥alx, y = 0) = fi(o0)x*?, x> 0
=0
The solution of the problem is

¥, = fileo)( 4+ 20

% sin F—(R —tan~! X)] / sin3—n 29)
5 X 5

The matching of second order tangential components
of velocity in the expansions demands

(28a)

, x<0. (28b)
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W1,(x,0) = Yz(x, 00) = Ay x7** (30)

2%
Ay = 3fi{o0) cot (—5«) 30
The second order terms in inner expansions (9) give
the second order equations in the inner region. In-
tegrating the first equation with respect to Y and
setting the resulting function of integration to zero we
get

VivWaey — Visary + Vorlier = WoaWavy + Yoyyy +
¢,=0 (32)

Yir@ax — YixPay + VayGrx — Yaxbry + 6“(152”(-—:;3()]

The boundary, matching and global heat flux con-
ditions are

Y=09 ll’zz‘/IZ]’:Os ¢2=03 or 4”2=0’ (34)

Y= 0, Yray = Ay x5, -0 (35)
Jp= O’J‘ Vay$y + ¥yr92dY. (36)
4]
Introducing the similarity variables

V2 = fo(n), 02 = x" %P g,(n) (37

the second order problem {32)-(36) reduces to
SP+ S+ 2+ 9.=0 (38)
g3 + 2a(fig> + 21192 + f291) =0 (39

[(0)=15(0)=0,4,(0)=0 or g>50)=0 (40)
J2(o0) = Ay, g2(o0) = 0 (41a,b)
and the integration of (39) leads to

Jy = GL [291 + f192dn = 54501 (42)

The present analysis can easily be extended to higher
order effects. The matching of the third order terms in
outer expansions (7) suggests ¢, = Gr™ %>, However,
the first eigen solution

= = Alfy = 211/3)ei"/x,
(43)

¢ = Mg, + 2ng/3)ed?/x

introduces a term in the inner expansion (3} which, in
order of magnitude, lies between second and the third
term of each series. Here 4 is an arbitrary constant
representing the uncertainty in the effective location of
origin,

The boundary-layer characteristics such as wall
shear and heat transfer can also be expressed in terms
of asymptotic expansions and similarity variables. The
coefficient of skin friction is

¢r = 2f1(0)e + 2£3(0)6* + 24£1(0)/3e** + O(&?)
44

where £ = Gr; !/%. The local Nusselt numbers for the
vertical plate is
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Nu, = — g5(0) + Ofs). (45)

The average Nusselt number based on the global heat
flux is

No=Ji&™t + 4, + Ofe). {46)

For the adiabatic wall case the wall temperature T,
may be expressed of recovery factor r

r=¢+ g,(0)e + A% + O(%). 4N

4. THE EFFECTS OF HORIZONTAL BOUNDARY

We here study the effects of an insulated horizontal
boundary introduced at distance d below the leading
edge of the convective wall plume (Fig. 1) into the
otherwise unbounded domain on the buoyancy in-
duced flow. The convective wall plume is placed at
x 2 0, y = 0 and the horizontal boundary at x = — d.
As in the unbounded medium case we seek the
solutions of the problem for large values of Grashof
numbers. The analysis for the leading terms in outer
and inner expansions is the same as presented in
Section 3(i) and we now consider the second order
terms in asymptotic expansions. In the outer region the
second order stream function is governed by equation
(27) and matching condition (28a). The bounding
horizontal wall is a streamline as no fluid is entrained
into the plume from the region x < —d and the
symmetry of flow about y = 0 may be expressed as

Yolx=—d, y)=0,{y[20

Yox, y=0=0 —d<x<0 (48)

In order to bring out certain implications clearly we
divide the study into three cases: (i)d = 0, (ii)d # Obut
finite (iii) d — oo. The third case is studied in Section 3
and the first two are considered below.

(a) Bounding plane at the leading edge (d = 0)
The solution of the second order outer flow problem
{27) under boundary conditions (28a) and (48) is

¥, = fi(o0)(x + P10

Gravity \ IL

(a) (b}

FiG. 1. Convected wall plume : Buoyancy induced flow due to

a line thermal source embedded at the leading edge of a

vertical plate in () unbounded medium (b) medium bounded

by an infinite horizontal plane at a distance x = — d from the
thermal source.
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The matching condition for tangential component of
velocity is

Woulx,0) = Wy dx, ) = Dyx n s {(50)
. 3n°

D, = — 2fi{=) t(~) 513

1 3fil=) co 10 {51}

The second order boundary layer equations satisfying
{50} are again the same as (38)-(42) except that the
boundary conditions {(41a}is replaced by f3(«) = D,.

(b) Bounding plane at a finite distance (d +# ()

When the distance between convective wall plume
and bounding horizontal plane is finite, the solution to
second order outer equation (27) subject to boundary
conditions (28a) and (48) is

. 3m , o :
¥, sin 5 ‘*”;f1(00){(x2 + ¥ sind (n ~ tan"! E)

X

, 3 )
— [(x + 2d)* + y*}**%sin (3 tan™ ! rif&)} {52)

The matching of inner and outer expansions requires
that

l{"2_"()(’ 0) = l/JZy(xa {X')

- —2/5 — ,_\;___ )Z;S gf {
= A X 1:1 (x od sec 5 . {33

The displacement speed (53) is zero at x = x, where x,

is given by
{ 2 5.2
X, = 2d /{[sec (Eﬂ - l}-
/ 5/

The second order boundary layer equations in the
inner region in terms of variables

ll/z = F(X,’?)s ¢2 = .\'"(‘;50(}(,7]),
reduce to
F" + 3"+ £f1F + G = x([1Fy = ['1F,) (56)

071G + 3G +2f1G + Fgy) = x(f1G; — g1 Fs)
(57)

F(x,0) + xF (x,0) =0, F'(x,0)=0 (58a,b)

(54}

(55}

. ) x VP n
F(x, ) = A, [1 - ( ;f—;—ﬁ) sec 5] (59)
G(x,00=0 or G{x,00=0,G(x,0)=0
{60a, b}
L= f Fg, + f1Gadn. (61)
o

The solutions to the non-similar equations are carried
out in terms of two coordinate expansions valid for
small and large values of x.

For small values of x the expression (59) may be
expanded in a series
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F(x,0) = A, + i B (x/dy"*25,d #£0 (62)

m=0
2n 1 T'(3/5)
B,=—-4, sec(——) 75 .
™ m 3-5
372 Il +mT (——S—ﬁ)
(63)
The corresponding expansions for F and G are
o F=f+ ¥ Famx/dy+*?
m=0
G=g,+ Y Guln)x/ay"™?? (64)
m=0

J=Jy+ Y, Jamm)x/a) "2,
m=0
The problem governing (f3,4,) is the same as de-
scribed in Section 3(ii) while the problems for (F,, G,,)
are as given below

" U 1+5m ’ I 5m+2 "
Fm+%f1Fm_' 5 lem+ 35 1Fm+Gm=O
(65)
4~ 5m
6" 'Gp + $/1Gn +*—'5—‘fiGm
Sm+2 , ,
+__5’“’91Fm +39,F,=0 (66)

F,u(0) = F;,(0) =0, G,(0) or G,(0)=0 (67)
Fp(0) = Bn, G(0) = 0. (68)

The expression for J,, using the above equations
m=0)is

* ’ 5 '
JZm = GJ‘O Fmgl +fledr’ == Sm — 1 Gm(o)
(69)

For large values of x the expression (54) may be
expanded in inverse powers of x, which after some
simplifications may be written as

F(x,0) = D, + O(1/x). (70)

Thus to the lowest order F and G may be expanded as
F=%,4+0x"1)G=%,+0x"". @)

The equations governing (% ,,%,) are identical to
those given in Section (4a).

S. RESULTS AND DISCUSSION

The equations obtained, in Sections 3 and 4, for the
first and second order boundary layers for the vertical
convective wall plume in an unbounded fluid and
bounded by horizontal plane at an arbitrary distance
have been integrated numerically by fourth order
Runge-Kutta method with Gill improvement for two
values of Prandtl numbers ¢ = 0.72 for air and 6.7 for
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3 4 5 § 7

F1G. 2. First order solutions: velocity f and temperature g,
distributions for air and water; —o = 0.72,----- g =61

water. The results for the first order velocity profile f
and temperature profile g, shown in Fig. 2, compare
favourably with [2]. The reference temperature T, is
given by

1.0915
2.6446 |

In the square bracket the upper value corresponds to
air (¢ = 0.72) and the lower one to water (¢ = 6.7).
For the second order effects we first present the
numerical results for the prescribed wall temperature
case. For an unbounded medium the velocity and
temperature profiles f4 and g, are shown in Figs. 3

T, =QJ/KJ,, J, =[ (72)

FIG. 3. Second order solutions when wall temperature is

prescribed. Velocity f% distributions for air and water: ——

unbounded medium (d = ), ----- bounded medium when
d=0.
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and 4 respectively. Coefficient of skin friction local and
global heat transfer at any section are

2.6201 0.79467 |
= €~ ¢
r =1 18596 0.0698
A[O.8734

u 85 4 0() (73
4 0.6199}' +06) (73)

0.4814
Nu, = [0_2 “ 6} + 0() (74)
N, o [L0918] L _foso2] o
= J -— £).
271 26446 |° 0.4060

The sign of second order contributions to ¢, and N,
are opposite to that of first order. Thus the total skin
friction decreases and the thickness of the buoyancy
layer increases. This is due to the fact that the
displacement speed (30) is positive as the outer inviscid
fluid is entrained in the buoyancy layer at an angle
2n/5 with the x-axis. The second order effects also
decreases the global heat transfer N, implying that a
part of the heat input from the source of heat is
absorbed by the vertical wall. This is also shown by the
expression (64) for the heat transfer from the plate.
When the region is bounded by a horizontal plane
placed at the leading edge of convected wall plume
(d = 0) the displacement speed (44) is negative as the
fluid enters the buoyancy layer at an angle 7r/10 with
the x-axis. The velocity and temperature profiles for
this case are also displayed in Figs. 3 and 4, re-
spectively, which show that they are of opposite sign

20

10

05

-05
1

FIG. 4. Second order solution when wall temperature is

prescribed. Temperature g, distributions for air and water:

—— unbounded medium (d = ), ----- bounded medium
when d = 0.

Noor AFzAaL

when compared with the unbounded medium case
(a — oc), implying that second order wall shear and
heat transfer should also be of opposite sign with
respect to the unbounded case. The buoyancy layer
characteristics for the fully bounded region (a = 0)
case for ¢ = 0.72 and 6.7 are

26201 N 336627 ,
o . -
7 18596 | T 0.2954 |°

0.87347 .. 4
+ ;.[06199 ]x“ + 05> (76}
2.0391
Nu,= — [1 0334] + O(¢) {77)
109157 | [3.3994
No=1,6aa6|° *|16504| 706 T8

The above results show that for bounded medium
cases {d = 0) the total skin friction and global heat
transfer increase at moderately large values of Grashof
numbers. The increase in global heat transfer implies
that heat is being transferred from the vertical wall to
the buoyancy layer. This is also supported by the
expression (77) for heat transfer from the plate.

In the general case when the medium is bounded by
a horizontal plane at x = — d the nature of the flow
changes depending upon x. For x < x, the displace-
ment speed is positive, the total skin friction and global
heat transfer decrease. At x = x, the displacement
speed is zero and the second order contributions
vanish. For x > x_ the displacement speed is negative,
skin friction and global heat transfer increase at
moderately large values of Grashof numbers. The
boundary layer characteristics for small values x are
(d # 0)

y

Y 2F(0)x/dyn >

m=1)

¢ = 2f1(0)e + [2]‘5(0) +

x 2 4+ 2411(0)3%° + 0(eY)  (79)

Nuy = —g5(0) = T GolONx/d)™ % + O(e) (80)
m=0

No=Je7h+J, + Y Jan(x/d)" T35 4 O,
m=0

(81}

The solutions to the six terms are given in Table 1. For
large values of x the results for the leading terms are the
same as given by equations (76) to (78).

We now present our results for an adiabatic con-
vective wall plume. The global heat flux at any section
is equal to the heat released Q, by the convective wall
plume at the leading edge. The second order velocity,
f%, and temperature, g,, profiles for the unbounded
medium are shown in Figs. 5 and 6 for ¢ = 0.72 and
6.7. The coefficient of wall shear and recovery factor
are given by
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Table 1. Second order solutions for a convective wall plume bounded by a horizontal plane at a finite distance below the
leading edge governed by equations (65)-(68)

Adiabatic wall

Presented wall temperature

m B, Fr(0) G,(0) I F(0) Gn(0)
o =072
0 — 1.1898 - 0.3817 - 0.1798 — 1.2488 0.4804 1.0830
1 0.2379 0.2086-2 — 0.7750-2 0.1395-1 — 0.9608-1 —0.2166
2 — 0.8329-1 0.1699-4 0.1321-2 ~0.1019-2 0.3363-1 0.7581-1
3 0.3332-1 —0.2549-4 —-0.2567-3 0.1273-3 - 0.1345-1 —0.3032-1
4 ~0.1416-1 0.7978-5 0.5595-4 — 0.2046-4 0.5717-2 0.1289-1
5 0.6320-2 —0.2239-5 - 0.1327-4 0.3849-5 —0.2515-2 —0.5671-2
6 —0.2803-2 0.6424-6 0.3358-5 — 0.8056-5 0.1132-2 0.2552-2
7 0.1281-2 - 0.1768-6 — 0.8938-6 0.1832-6 - 0.5174-3 - 0.1167-2
o=67
0 —0.5769 —0.1581 - 0.1828 —0.1364 0.6819-1 0.4268
1 0.1154 0.3514-2 — 0.3296-2 0.6165-3 —0.1364-1 —0.8537-1
2 — 0.4038-1 —0.5374-3 0.4234-3 —0.3551-4 0.4774-2 0.2988-1
3 0.1615-1 0.1108-3 — 0.6844-4 0.3793-5 — 0.1909-2 —0.1195-1
4 — 0.6865-2 - 0.2626-4 0.1309-4 —0.5726-6 0.8115-3 0.5079-2
5 0.3024-2 0.6787-5 —0.2819-5 0.1125-6 - 0.3571-3 —0.2235-2
6 —0.1359-2 — 0.1865-5 0.6623-6 - 0.2792-7 0.1607-3 0.1006-2

velocity f and temperature g, are also shown in Figs.
5 and 6. The corresponding results for skin friction and

_[ze201] _[o3018] ,
=1 1.8596 0.0561

recovery factor are

0.6199

N '1[0.8734]6,,/3 +0E) ®2)

g
0.1740

0.4416
r=e+ l: ]62 + 287 + 0(%).  (83)

The second order results show that for an adiabatic
convective wall plume the total skin friction and
recovery factor decrease whereas the thickness of the
buoyancy layer increases at moderately large values of

Grashof numbers.

For the bounded medium (d = 0) the profile of

10

FIG. 5. Second order solution when vertical wall is adiabatic.
Velocity f; distribution for air and water: —— unbounded
medium (d = ), ----- bounded medium (d = 0).

. _[262017  [16595] ,
7= 1.8596 0.2355 |°

+i 0.8734
0.6199

20

! A )
3

4
1

—1 1
5

]58/3 + 0 (84)

FIG. 6. Second order solutions when vertical wall is adiabatic.
Temperature g, distributions for air and water: —— un-
bounded medium (d = ), ----- bounded medium (d = 0).
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— 18706 "2 83 2
r=c+ [0.7372}, + A7 + O(8?). (85)

These results show that for bounded medium (d = 0)
the total skin friction and recovery factor increases and
the thickness of buoyancy layer decreases for mod-
erately large values of Grashof numbers.

In the general case (d # 0) where the medium is
partially bounded by a horizontal plane at x = — d,
the skin friction and recovery factors for small values
of x are given by

¢ =2f10) + 2[1‘2(0) + Y FoO)x/dymt 25 }
. m=0

x &2 4+ 2211(0)/3e%7 + 0(s*)  (86)
r=c¢+ l:gz(o) -+ Z Gm(O)(x/d)m+z SJ
m=0
xe? 4+ 2683 4 0. (87)

The various coefficients obtained from the solutions of
the equations are also given in Table 1. For large
values of x the solution to the leading terms in the
expansions is given by equations (84) and (85). Fur-
ther, from earlier discussion it follows that the skin
friction and recovery factor decrease for x < x_, in-
creases for x > x, and for x = x,. the second order

contribution vanishes.
REFERENCES

i. V.D. Zimin and Y. U. Lyakhov, Convective wall plume,
J. Appl. Mech. Tech. Phys. 11, 159 (1970). (Translated
from Russian, January 1973).

2. Y. Jaluria and B. Gebhart, Buoyancy induced flow
arising from a line thermal source on an adiabatic vertical
surface, Int. J. Heat Mass Transfer 20, 153-157 (1977).

3. 1. ). Grella and G. M. Faeth, Measurements in a two

dimensional thermal plume along a vertical adiabatic
wall, J. Fluid Mech. 71, 701 (1975).

4. I. Imai, Second approximation to the boundary layer
flow over a flat plate, J. Aeronaut. Sci. 24, 155-156 (1957).

5. T. Fuji, Theory of the steady laminar natural convection
above a horizontal line source and a point heat source,
Ini. J. Heat Mass Transfer 6, 597- 606 (1963).

6. N.Riley, Free convection from a horizontal line source of
heat, Z. Angew. Math. Phys. 25, 818 -827 (1974).

APPENDIX: GLOBAL HEAT FLUX CONSIDERATIONS

The first order boundary-layer equations are not correct
for x ~ O(1) and heat transfer has an error of order &; %3
when x ~ O(¢37), and by integrating heat conduction we lose
a term in heat transfer which represents the concentrated heat
source at the leading edge. From an order of magnitude
analysis near the leading edge we consider the following
variables:

x=e3% y =100 =l b = @ (A1)

The global heat flux from the vertical plate can be
estimated by integrating [4] the energy equation expressed in
the variables (A1) along a large control surface Q to get
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where ¢ is the nondimensional heat input from the source per
unit length. For a large rectangle control surface Q with sides
y=0, y=1, x=—1 and x = x,. where x4 ~ O(1), the
expression (A2) may be simplified and expressing the tilde
variables in favour of untilde variables from (A1) the result for
global heat flux Q can be written as
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In global heat flux expression (A3} the tirst term side is the
heat input Q, (= ¢,9KT,) from the line source embedded at
the leading edge and the second term the integrated con-
ductive heat transfer from the vertical wall.

PANACHE CONVECTIF EN PAROI: ANALYSE D’ORDRE ELEVE

Reésumeé — On étudie, par la méthode des développements asymptotiques, la convection naturelie issue d’une

source thermique, fixe, linéaire et noyée au bord d’attaque d’une surface verticale, pour des valeurs

modérément élevées du nombre de Grashof. Les équations de couche limite de premier et de second ordre

sont traitées pour le milieu limité par un plan infini et horizontal, placé a distance au dessous du panache de

paroi. Les solutions numériques sont obtenues pour deux fluides, Iair et ’eau. On montre que la structure du

panache dépend fortement de la situation du plan horizontal. On présente séparément des résultats pour une
température de paroi donnée et pour un panache adiabatique.

KONVEKTIVE AUFTRIEBSSTROMUNG AN EINER WAND:
EINE ANALYSE HOHERER ORDNUNG

Zusammenfassung—-Fiir mdBig groBe Grashof-Zahlen wird die natiirliche Konvektionsstromung, die von
einer stationiren linienformigen Wirmequelle ausgeht, nach der Methode der angepaBten asymptotischen
Entwicklung untersucht. Die Wirmequelle sitzt dabei an der Vorderkante ciner senkrechten Platte.
Diskutiert werden die Grenzschichtgleichungen 1. und 2. Ordnung fiir den Fall, daB das Medium nach unten
durch eine unendlich groBe horizontale Flidche begrenzt wird. Diese Fliche wird in beliebigem Abstand
unterhalb der konvektiven Wandanlaufstrémung angebracht. Numerische Lésungen werden fiir die beiden
Medien Luft und Wasser erhalten. Es zeigt sich, daB die Struktur der erzwungenen Auftriebsstromung sehr
stark von der Lage der waagerechten Ebene abhingig ist. Gesonderte Ergebnisse werden fiir den Fall
vorgegebener Wandtemperatur als auch fiir eine Auftriebsstrdmung bei adiabater Wand dargestellt.



Convective wall plume: higher order analysis

CBOBOITHOKOHBEKTHUBHAS BOCXOJAWASA CTPYSE HA CTEHKE. AHAJIM3
C NOMOIINBIO CTAPIIUX YJIEHOB PA3JIOXEHHUSA

ARBOTAUHA — METO0M CPallMBaEMbIX aCHMITOTHYECKHX PAIIOXEHHH NPOBENECHO HCCIENOBAHRE CBO-
GO/HOKOHBEKTMBHOIO TEYEHMA, BOIHHKAIOWIETO OT CTALMOHAPHOrO JIMHEHHOTO MCTOYHMKA Tera,
3a[IeIAHHOTO B TIEPEIHIOK KPOMKY BEPTHKAJbHOM NMOBEPXHOCTH, PH YMEPEHHO OOJIBIIHX 3HAMCHMAX
yucia ['pacroda. AHaNM3HPYIOTCH ypaBHEHHS NOTPAHHMHOIO CJIOS NEPBOrO W BTOPOTO nopsika B
ciy4ae, KOT[Ja BHH3Y IOJ KOHBEKTHBHO! CTpYell Ha MPOU3BOJILHOM PaCCTOSHMM HOMEMIEETCH Heorpa-
HAYEHHAR TOPH3OHTAJbHAS NOBEPXHOCThb. [1ONYUEHB! YHC/ICHHBIC PEHICHHA A8 ABYX XHIKOCTEH, a
HMEHHO : 15 BO3AYXa M Boinl [Tokasano, 4TO Ha CTPYKTYPY KOHBEKTHBHOH CTDYH Ha CTCHKE CHJIbHOE
BJIMSHHE OKAa3hIBAET MOJIOKEHHC FOPH3OHTajbHOH nuockocrd. [IpHBEncHBI HEKOTODBIE pPE3yibTaThi
AN CNy4ast 3a7aHHON TEMREPATYPHI CTEHKH K aiHabaTH4eckoll KOHBEKTHBHOMN CTPYH HA CTEHKE.
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