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Abstract-A study of natural convection flow arising from a steady line thermal source embedded at the 
leading edge of a vertical surface is carried out for moderately large values of Grashof number by the method 
of matched asymptotic expansions. The first and second order boundary-layer equations are studied when 
the medium is bounded by an infinite horizontal surface placed at an arbitrary distance below the convective 
wall plume. The numerical solutions are obtained for two fluids, namely air and water. It is shown that the 
structure of the convected wall plume depends strongly on the location of horizontal plane. Separate 

results for prescribed wall temperature and for an adiabatic convective wall plume are presented. 

NOMENCLATURE 

nondimensional distance of horizontal 
plane from the source; 
coefficient of skin friction, 27,JpU’; 
first and second order stream functions 
defined by (Isa) and (36); 
gravitational acceleration; 
first and second order temperatures defined 
by (18a) and (36); 
Grashof number, gp T, L3/v2 ; 

local Grashof number, g/3 T, x3/v’ ; 
nondimensional global heat flux defined by 

(6); 
first and second order global heat flux 
defined by (11); 
thermal conductivity of the fluid; 
reference length ; 
global Nusselt number, Q/K(T, - T,); 

local Nusselt number, xq,(x)/K(T, - T,); 

conductive heat flux from wall plume; 
nondimensional and dimensional heat in- 
put by the thermal source; 
global heat flux from convective wall 
plume ; 
recovery factor, (T. - T&T,; 
temperature; 
adiabatic wall temperature; 
reference temperature, QJKJ, ; 

prescribed wall temperature, 
T, + T,Gr;“‘; 

characteristic free convection speed, 
vGr215/L; 

value of x where displacement speed 
vanishes ; 
coordinates along the wall plume measured 
from heat source and normal to it; 
boundary-layer variable, yGr”‘. 

Greek symbols 

B, volumetric thermal expansion coefficient ; 
8, local perturbation parameter, Gr; “’ ; 

reference perturbation parameter, Gr-‘lJ 

nondimensional temperature, 
(T- Tm)Gr”5/T,; 

first and second order temperatures in 
inner region ; 
unspecified eigen constant ; 
fluid density; 
Prandtl number; 
wall shear ; 
nondimensional stream function; 
first and second order stream function in 
the inner region ; 

‘I”,, ‘I”,, first and second order stream function in 
the outer region; 

v, kinematic viscosity. 

1. INTRODUCTION 

THE FLOW induced by buoyancy due to a horizontal 
line source embedded at the leading edge of vertical 
plate in a fluid which is otherwise at rest is studied for 
moderately large values of Grashof numbers by the 
method of matched asymptotic expansions. The prob- 
lem is of interest in numerous engineering appli- 
cations, e.g. electronic circuitry where electronic de- 
vices mounted on a vertical surface dissipate energy at 
constant rate, production processes where selective 
and local heating gives rise to a constant thermal input 
over a surface. The similarity solutions for the classical 
laminar boundary layer equations for a convective 
adiabatic wall plume have been studied by Zimin and 
Lyakhov [l] and Jaluria and Gebhart [2]. Measure- 
ments for turbulent wall plume have been reported by 
Grella and Faeth [3]. 

The overall objectives of the present work on 
convective wall plume are three-fold. Firstly, to ana- 
lyse the Navier-Stokes equations for moderately large 
values of Grashof number by the method of matched 
asymptotic expansions. In particular the second order 
corrections to [l] and [2] for moderately large 
Grashof numbers have been predicted. Secondly, the 
effects of restricted domain, when a horizontal infinite 
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plane boundary is introduced at an arbitrary distance 
below the convected wall plume, have been investi- 
gated. It is shown that outer layer entrainment and the 
boundary-layer flow pattern is considerably different 
as the buoyancy layer can no longer entrain the fluid 
from all parts of an infinite domain. Thirdly, to study 
the global heat transfer through the integration of 
energy equation for a large control surface enclosing 
the leading edge of the plate embedding the source 
following a procedure analogous to Imai [4]. 

The results for the two cases of adiabatic wall and 
prescribed wall temperature of convective wall plume 
are presented separately. For the adiabatic wall case 
the adiabatic wall temperature and recovery factor are 
determined and for the case of prescribed wall tem- 
perature the local and global heat transfer are 
estimated. 

2. GOYERNl;“jC EQUATIONS 

Let a horizontal line thermal source of heat, with a 
steady input Qs, embedded at the leading edge of 
vertical plate, be placed in an extensive unstratified 
fluid of uniform temperature. The vorticity transport 
and energy equations in nondimensional form under 
usuai Boussinesq approximation are 

outer limit is defined as .X and x fixed as Gr + Y :irtd 

the outer layer, essentially inviscid, can be studied jn 
the term of outer expansions 

Ii/ _I- Y,(.U. _Yi t i iY :(Y. 1.) i- O(i.L/ 

t$ = @,(s, y) -t ) ,@,l.‘i, I ) -t ffkJ I i7) 

where ct and cz are the gauge functions. tv be 
determined. The inner region close to the wall, where 
diffusive effects are important, is characterized bl 
buoyancy forces. An order of magnitude analysis lends 
to the following inner variable 

y= \.Gr” L( 181 

and the inner limit is X, Yfixed for Gr -+ /_. The inner 
asymptotic expansions are 

IL = GY ' "[@1(.X. Yl b Aji//LIUq I')-+ OiA,)j 

@I 

(b = c@,(x, Yj + dlq!qY. 1') i- O&i. 

where Al and AZ are the gauge functions. The match- 
ing of the outer and inner expansions in the overlap 
region leads to 

t:r = A, = (;r ’ ‘, ilOl 

The expansion for global heat flux may also be written 
as 

The no slip boundary condition on the vertical plate 
is 

!‘=0,(1/=$,=0 (3) 

and that of the prescribed wall temperature or the 
adiabatic wall is 

JJ = 0, d, = (r,, - T, )G?/T, or 3 = 0. 
r7J 

(4) 

Far away from the plate the ambient conditions are 

x2+rz+y_, $,-PO. (p-0. (5) 

The global heat flux Q is given by (see Appendi.x) 

H 
’ Q(x)=KT,J,J=Gr”5 CT $,d,dy - Gr-2,5 
0 

X z $,dy + 0(Gr-2’S) (6) 
0 1 

The solution to the leading terms in outer cxpan- 
sions (7) satisfying the outer boundary condition (5) 

Y,(x, ~1 = Cn,C.x, j,j = 0 iW 

shows that there is no flow or temperature induced in 
the outer layer, when Grashof numbers are large. The 
trivial solution fails to explain the convection of heat 
released by the source. The nonuniformity, near the 

plate, can be analysed by inner expansions (9). Its 
leading terms satisfy the following equations. 

$ll.l//lXY _- 1//1&l i, ;- rkl>y; -b cp* --= 0 !i3) 

$Iyc$,x - 5$&b,, i- D !d):yr r= 0. i341 

Equation (13) has been written after integrating it once 
with respect to Y and the resulting function of .X set 
equal to zero. The boundary conditions and 1 he 
matching conditions are 

3. ASYMPTOTIC ANALYSIS 

Y= 0, $8, =: etlp = 0, +I .:z (‘f; .- T,)Gr’ “!‘I; tx 

c&IT = (i r1.5) 

Y-1 %, I),, -ro. ci’j --Cl. (16) 

The global heat flux condition gives 

r 

‘I 
.f, =iT $,,ch!df’, ri7t 

.i 0 

The asymptotic solutions of the problem formulated 
in section 2 are studied for large values of Grashof 
numbers by the method of matched asymptotic expan- 
sions. We seek two limits and two corresponding 
asymptotic expansions which describe the flow region 
close to the wall and away from it. The length scales for 
these flow regions are of order Gr-1’5 and unity, The [lj and [ZJ, 

and the heat input from the line source (?, - KT,Jl. 
The similarity variables, that are slightly different from 
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imply that the tem~rature of wall is assumed to 
depend upon x as 

Y&,0) =E $2),(x, 00) = A,x-2’5 (30) 

A, =jf*(oO)cot $ 0 . (31) 

T,(x) = T, + Gr-“‘T,x-“I’. (19) The second order terms in inner expansions (9) give 

Introducing the similarity variables in equations (13)- 
the second order equations in the inner region. In- 

(17) we get 
tegrating the first equation with respect to Y and 
setting the resulting function of integration to zero we 

f’;‘+~~~f;-~f;Z+g~=O, (20) get 

s; + $fl(fiC?l)l = 0, (21) 4QtY$ZxY - $&WY + $&WY - Il/ZSlc/lYY + $2YYY -t 

fi(0) =f;(O) = 0, s,(O) = 1 or y\(O) = 0, 42 =0 (32) 

(22a,b,c) $ly$Zx - $,r42Y + ti2Y41x - @ZxhY + 0_‘42YY = 0 

f;(a) = &(~I = 4 (2% W 
(33) 

i 

The boundary, matching and global heat flux con- 
J, = u rf;gldvl. (24) ditions are 

The equations are identical with two dimensional 
buoyant plume [5,6] but the boundary conditions 
(22b) and (22~) are different. An integration of (21) 
along with (23a) gives 

Y= 0, $* = ezu = 0, & = 0, or 4; = 0, (34) 

Y-+i~),i,h~~+A~x-~‘~,#~-+O (35) 

@k2Y#1 + $lY#zdx (36) 

g; + $Of& = 0. Wa) 

Using the boundary condition (22a) we get 

g;(O) = 0 (25b) 

implying that, to the lowest order, the vertical plate is 
always adiabatic. However, our study of second order 
effects for prescribed wall temperature predicts finite 
heat transfer and thus cannot be regarded as adiabatic. 
The matching of the leading terms for stream function 
in inner and outer expansions (7) and (9) leads to 

the required boundary condition for the second order 
outer problem. This shows that outer flow is sink-like 
in character. 

(ii) Second order problem 
In the outer layer, the solution of the second order 

term for temperature is Qp,(x, y) = 0 and the vorticity 
equation leads to an irrotational type flow governed 

JO 

Introducing the similarity variables 

$2 = f&b (62 = x-6’s 92(v) (37) 

the second order problem (32)-(36) reduces to 

fi;‘+ #f*s'; ++fif; +g2=0 (38) 

s; + f~(S& + 2fiS2 +fh) = 0 (39) 

f2(0) =f;(O) = 0, g2(0) = 0 or g;(O) = 0 (40) 

f;(cn) = A,, szt’~s) = 0 W, b) 

and the integration of (39) leads to 

J, = CJ 
s 

o”f;sl +f;g2+= 3s’z(O). (42) 

The present analysis can easily be extended to higher 
order effects. The matching of the third order terms in 
outer expansions (7) suggests Ed = Gr-2’5. However, 
the first eigen solution 

1cI = - 4f, - 2rlf ;/3w3/x, 
(43) 

by 
6, = A(gl + 2~g~/3)&~13/x 

v%Jz = 0. (27) introduces a term in the inner expansion (9) which, in 
The boundary condition (26) provided by matching order of magnitude, lies between second and the third 
and the requirement of flow symmetry are term of each series. Here 1 is an arbitrary constant 

Y’,(x, y = 0) =&(co)x3’5, x 3 0 (2ga) 
representing the uncertainty in the effective location of 
origin. 

= 0 , x-co. @fW The boundary-layer charac~ristics such as wall 

The solution of the problem is shear and heat transfer can also be expressed in terms 

Yz =fi(cO)(xZ + y2)3”O 
of asymptotic expansions and similarity variables. The 
coefficient of skin friction is 

xsin[$ - tan-‘~~],/sin~ (29) c/ = 2f)i(O)E + 2f ;(o)E2 + 21f ;(0)/3F” + 0(&3) 

(44 

The matching of second order tangential components where E = Gr; ‘@. The local Nusselt numbers for the 
of velocity in the expansions demands. vertical plate is 
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Nu, = - g>(O) + O(E). (45) 

The average Nusselt number based on the global heat 
flux is 

N, = Jie-* + J, + O(E). (46) 

For the adiabatic wall case the wall temperature 7, 
may be expressed of recovery factor Y 

I = C + g2(0)eZ + E.&s’3 + O(c3). (471 

4. THE EFFECTS OF HORlZONTAL BOUNDARY 

We here study the effects of an insulated horizontal 
boundary introduced at distance d below the leading 
edge of the convective wall plume (Fig. 1) into the 
otherwise unbounded domain on the buoyancy in- 
duced flow. The convective wall plume is placed at 
x 2 0, y = 0 and the horizontal boundary at x = - d. 
As in the unbounded medium case we seek the 
solutions of the problem for large values of Grashof 
numbers. The analysis for the leading terms in outer 
and inner expansions is the same as presented in 
Section 3(i) and we now consider the second order 
terms in asymptotic expansions. In the outer region the 
second order stream function is governed by equation 
(27) and matching condition (28a). The bounding 
horizontal wall is a streamline as no fluid is entrained 
into the plume from the region x < - d and the 
symmetry of flow about y = 0 may be expressed as 

YZ(x = - d, y) = 0, / y 1 2 0 

y&x, y = 0) = 0, - d < .x ~0. (48) 

In order to bring out certain impli~tions clearly we 
divide the study into three cases : (i) d = 0, (ii) d # 0 but 
finite (iii) d -+ m. The third case is studied in Section 3 
and the first two are considered below. 

(a) Bounding plane at the leading edge (d = 0) 
The solution of the second order outer flow problem 

(27) under boundary conditions (28a) and (48) is 

Y’, =f~(co)(x2 -+ y2)3”o 

xsin[i[$ - tan-rE]]/sin$. (49) 

(a) fb) 

FIG. 1. Convected wall plume : Buoyancy induced flow due to 
a line thermal source embedded at the leading edge of a 
vertical plate in (a) unbound~ medium (b) medium bounded 
by an infinite horizontal pIane at a distance x = - d from the 

thermal source. 

The matching condition for tangent&I component of 
velocity is 

YQ,(x,O) = u/&(X, % ) FE D,.Y 2 5 150) 

The second order boundary layer equations satisfying 
(50) are again the same as (38)-~42) except that the 
boundary conditions (41a) is replaced byf;( x ) = D,. 

(b) hounding plane at a finite distance (d f 0) 
When the distance between convective wall plume 

and bounding horizontal plane is finite, the solution to 
second order outer equation (27) subject to boundary 
conditions (28a) and (48) is 

(x2 + j~‘)~ lU sin 3 ( 7c - tan” I t 
) 

- [(x + 2d)’ + _$f3i10sin 
i 

i tan- ’ z&2 . (52) 

The matching of inner and outer expansions requires 
that 

Y&, 0) = Il/zy(x, c*J) 

= A,x- (531 

The displacement speed (53) is zero at x = x, where x, 
is given by 

(54) 

The second order boundary layer equations in the 
inner region in terms of variables 

ti2 = F(x,r/), & = Y ’ “C(.x.q), (551 

reduce to 

F”’ + &F” + &;F’ + G = s($;F; -j“;F,) (56) 

a-‘G” + $(f,G’ + 2f;G + F’y,) = x(f;G, - g;F,) 
(57) 

F(x,O) + xF,(x,O) = 0, F’(x,O) = 0 (5% bl 

G(x,O)=O orG’(x,O)=O,G(x,~)=O 
(60a, b) 

I’ 

1; 
J, = (r F’g, + .f;Gdrl. (61) 

0 

The solutions to the non-similar equations are carried 
out in terms of two coordinate expansions valid for 
small and large values of x. 

For small values of x the expression (59) may be 
expanded in a series 
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F’(x, co) = Al + i B,,,(x/~)“+~‘~, d # 0 (62) 
m=O 

(63) 

The corresponding expansions for F and G are 

- F = f2 + f F,(q)(x/d)“+2’5 
m=O 

G = g2 + f G,,,(~)(x/u)“‘+~‘~ (64) 
m=O 

J = J2 + f J2,(q)(x/u)m+2’5. 
m=O 

The problem governing (f2,g2) is the same as de- 
scribed in Section 3(ii) while the problems for (F,, G,) 
are as given below 

FL + $f,Fk - yf;F. + G, = 0 

(65) 

0-q; + $fiC* + Ff;c, 

+ yg;Fn + $g,F:, = 0 (66) 

F,,,(O) = Fm(0) = 0, G,,,(O) or CL(O) = 0 (67) 

Fm(cc) = B,, G,(a) = 0. (68) 

The expression for J2,,, using the above equations 
(m > 0) is 

s 

m 
J2,,, = Q GAO). 

0 
Fag, +f;G,& = -A 

(69) 

For large values of x the expression (54) may be 
expanded in inverse powers of x, which after some 
simplifications may be written as 

F’(x, co) = D, + 0(1/x). (70) 

Thus to the lowest order F and G may be expanded as 

F = Y2 + 0(x- ‘), G = Y, + 0(x- ‘). (71) 

The equations governing (ptz,‘?Yr) are identical to 
those given in Section (4a). 

5. RESULTS AND DISCUSSION 

The equations obtained, in Sections 3 and 4, for the 
first and second order boundary layers for the vertical 
convective wall plume in an unbounded fluid and 
bounded by horizontal plane at an arbitrary distance 
have been integrated numerically by fourth order 
Runge-Kutta method with Gill improvement for two 
values of Prandtl numbers CJ = 0.72 for air and 6.7 for 

rl 

FIG. 2. First order solutions: velocity f; and temperature g1 
distributions for air and water: __ o = 0.72, - - - - - (r = 6.7. 

water. The results for the first order velocity profile f; 
and temperature profile gi, shown in Fig. 2, compare 
favourably with [2]. The reference temperature T, is 
given by 

1.0915 
T,=QJKJ,,J,= 26446. 

[. 1 (72) 

In the square bracket the upper value corresponds to 
air (a = 0.72) and the lower one to water (a = 6.7). 

For the second order effects we first present the 
numerical results for the prescribed wall temperature 
case. For an unbounded medium the velocity and 
temperature profiles f; and g2 are shown in Figs. 3 

FIG. 3. Second order solutions when wall temperature is 
prescribed. Velocity f; distributions for air and water: __ 
unbounded medium (d = co), - - - - - bounded medium when 

d = 0. 
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and 4 respectively. Coefficient of skin friction local and 
global heat transfer at any section are 

E8'3 + O(2) (73) 

The sign of second order contributions to c, and N, 

are opposite to that of first order. Thus the total skin 
friction decreases and the thickness of the buoyancy 
layer increases. This is due to the fact that the 

displacement speed (30) is positive as the outer inviscid 
fluid is entrained in the buoyancy layer at an angle 

2n/5 with the x-axis. The second order effects also 
decreases the global heat transfer N, implying that a 

part of the heat input from the source of heat is 
absorbed by the vertical wall. This is also shown by the 

expression (64) for the heat transfer from the plate. 

When the region is bounded by a horizontal plane 
placed at the leading edge of convected wall plume 
(d = 0) the displacement speed (44) is negative as the 
fluid enters the buoyancy layer at an angle 77r/lO with 
the x-axis. The velocity and temperature profiles for 
this case are also displayed in Figs. 3 and 4, re- 
spectively, which show that they are of opposite sign 

2.0 r r i \ 
\ 
\ 
\ 
\ 
I 

\ 
1 
, 
\ 
\ 

\ 

\ 
\ 

\ 

\ 

\ 

\ 

\ 

\ 

-OS LI 1 2 3 T4 5 6 7 

FIG. 4. Second order solution when wall temperature is 
prescribed, Temperature g2 distributions for air and water : 
__ unbounded medium (d = cc), - - - - - bounded medium 

when d = 0. 

when compared with the unbounded medium case 
(u -+ x), implying that second order wall shear and 
heat transfer should also be of opposite sign with 

respect to the unbounded case. The buoyancy layer 
characteristics for the fully bounded region (n =: 0) 
case for 0 = 0.72 and 6.7 are 

The above results show that for bounded medium 

cases (d = 0) the total skin friction and global heat 
transfer increase at moderately large values of Grashof 
numbers. The increase in global heat transfer implies 

that heat is being transferred from the vertical wall to 
the buoyancy layer. This is also supported by the 
expression (77) for heat transfer from the plate. 

In the general case when the medium is bounded by 
a horizontal plane at x = - d the nature of the flow 
changes depending upon x. For x < x, the displace- 
ment speed is positive, the total skin friction and global 

heat transfer decrease. At Y = .x~ the displacement 
speed is zero and the second order contributions 
vanish. For x > x, the displacement speed is negativ-e, 
skin friction and global heat transfer increase at 
moderately large values of Grashof numbers. The 

boundary layer characteristics for small values x are 

(d f 0) 

2f“;(O) + c 2F;(O)(x/d)“+’ ’ 
m : II i 

x c2 + 2if;(0)/3~*‘~ + O(c”) (79) 

Nu, = -g;(O) - i G;(O)(x/d)‘” +’ ’ + O(e) (80) 
m _ 0 

N, = Jlc-’ + J, + 2 J,,,,(x/~)"+~'~ + O(i:j. 
“, = 0 

1811 

The solutions to the six terms are given in Table 1. For 
large values of x the results for the leading terms are the 
same as given by equations (76) to (78). 

We now present our results for an adiabatic con- 
vective wall plume. The global heat flux at any section 
is equal to the heat released Q, by the convective wall 
plume at the leading edge. The second order velocity, 
f;, and temperature, g2, profiles for the unbounded 
medium are shown in Figs. 5 and 6 for 0 = 0.72 and 
6.7. The coefficient of wall shear and recovery factor 
are given by 
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Table 1. Second order solutions for a convective wall plume bounded by a horizontal plane at a finite distance below the 
leading edge governed by equations (65)-(68) 

Presented wall temperature Adiabatic wall 

m & F:(O) 

- 1.1898 
0.2379 

- 0.8329-l 
0.3332-l 

-0.1416-l 
0.6320-2 

- 0.2803-2 
0.1281-2 

- 0.3817 
0.2086-2 
0.1699-4 

- 0.2549-4 
0.7978-5 

- 0.2239-5 
0.6424-6 

- 0.1768-6 

0 - 0.5769 - 0.1581 
1 0.1154 0.3514-2 
2 - 0.4038-l - 0.5374-3 
3 0.1615-l 0.1108-3 
4 - 0.6865-2 - 0.2626-4 
5 0.3024-2 0.6781-5 
6 - 0.1359-2 - 0.1865-5 

cm J, 

Q = 0.12 

- 0.1798 - 1.2488 
- 0.7750-2 0.1395-l 

0.1321-2 - 0.1019-2 
- 0.2567-3 0.1273-3 

0.5595-4 - 0.2046-4 
- 0.1327-4 0.3849-5 

0.3358-5 - 0.8056-5 
- 0.8938-6 0.1832-6 

a = 6.7 

- 0.1828 - 0.1364 
- 0.3296-2 0.6165-3 

0.4234-3 - 0.3551-4 
- 0.6844-4 0.3793-5 

0.1309-4 - 0.5726-6 
- 0.2819-5 0.1125-6 

0.6623-6 - 0.2792-l 

Km 

0.4804 
- 0.9608-l 

0.3363-l 
- 0.1345-l 

0.5717-2 
- 0.2515-2 

0.1132-2 
- 0.5174-3 

0.6819-l 
-0.1364-l 

0.4774-2 
- 0.1909-2 

0.8115-3 
- 0.3571-3 

0.1607-3 

G,(O) 

1.0830 
- 0.2166 

0.7581-l 
- 0.3032-l 

0.1289-l 
- 0.5671-2 

0.2552-2 
- 0.1167-2 

0.4268 
- 0.8537-l 

0.2988-l 
-0.1195-l 

0.5079-2 
- 0.2235-2 

0.1006-2 

velocity f; and temperature g2 are also shown in Figs. 
5 and 6. The corresponding results for skin friction and 

[ 1 
recovery factor are 

0.8734 

+ ’ 0.6199 
E*‘~ + 0(c3) (82) 

0.4416 

r=E+ 0.1740 [ 1 &2 + d&S’” + O(E3). (83) +A 
0.8734 

[ 1 0.6199 
&a’3 + O(c3) (84) 

The second order results show that for an adiabatic 
convective wall plume the total skin friction and 
recovery factor decrease whereas the thickness of the 
buoyancy layer increases at moderately large values of 
Grashof numbers. 

For the bounded medium (d = 0) the profile of 

-a5 I I I I I I 
0 1 2 3 4 5 6 

FIG. 5. Second order solution when vertical wall is adiabatic. 
Velocity f; distribution for air and water: - unbounded 

FIG. 6. Second order solutions when vertical wall is adiabatic. 

medium (d = w), - - - - - bounded medium (d = 0). 
Temperature g, distributions for air and water: __ un- 
bounded medium (d = co), - - - - - bounded medium (d = 0). 
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l? + /J.P + O(?). C-35) 

These results show that for bounded medium (d = 0) 

the total skin friction and recovery factor increases and 
the thickness of buoyancy layer decreases for mod- 

erately large values of Grashof numbers. 
In the general case (d # 0) where the medium is 

partially bounded by a horizontal plane at x = - ti, 
the skin friction and recovery factors for small values 

of x are given by 

I 

Cf = 2f1;(0) + 2 + c F;(O)(.Y/d)“‘+2 5 
ff=O 1 

x i:l + 2i,1“;(0)/3~“‘~ + O(i:“) (86) 

I 

r = t: + ~~(0) + 1 G,,,(O)(X/~)"'+~ 5 
m = 0 I 

x ? + i.P3 + O(9). (87) 

The various coefficients obtained from the solutions of 

the equations are also given in Table 1. For large 

values of x the solution to the leading terms in the 
expansions is given by equations (84) and (85). Fur- 
ther, from earlier discussion it follows that the skin 

friction and recovery factor decrease for ‘c < x,, in- 

creases for .x > X, and for x = x, the second order 

contribution vanishes. 
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APPEVDIX: GLOBAL HEAT ELI’\ U~NSII~BHAT10US 

The first order boundary-layer equations are not correct 
for x - O(1) and heat transfer has an error of order c; 5 3 
when x . 0(e:‘3), and by integrating heat conduction we lose 
a term in heat transfer which represents the concentrated heat 
source at the leading edge. From an order of magnitude 
analysis near the leading edge we consider the following 
variables : 

y = 1:y;. y = i:; ‘j. * z I::$. (/l _ 4, rAli 
The global heat flux from the vertical plate can be 

estimated by integrating [4] the energy equation expressed in 
the variables (Al) along a large control surface n to get 

where y is the nondimensional heat input from the source per 
unit length. For a large rectangle control surface D with sides 
J’ = 0, v= 1, Y = - 1 and x =x0. where x0 5 O(I), the 
expression (A2) may be simplified and expressing the tilde 
variables in favour of untilde variables from (Al) the result for 
global heat flux Q can be written as 

Q SE t:,yKT, - 1 KT,(\-,O)du = K7;J tA3) 

In global heat flux expression (A3) the tirst term side 1s the 
heat input Q, (= a,qKT,) from the line source embedded at 
the leading edge and the second term the integrated con- 
ductive heat transfer from the vertical wall. 

PANACHE CONVECTIF EN PAR01 : ANALYSE D’ORDRE ELEVE 

RCumC -On etudie, par la methode des developpements asymptotiques, la convection naturelle issue d’une 
source thermique, fixe. lintaire et noyte au bord d’attaque d’une surface verticale, pour des valeurs 
modtrtment tlevees du nombre de Grashof. Les equations de couche limite de premier et de second ordre 
sont trait&es pour le milieu limit& par un plan infini et horizontal, place i distance au dessous du panache de 
paroi. Les solutions numiriques sont obtenues pour deux fluides, l’air et l’eau. On montre que la structure du 
panache depend fortement de la situation du plan horizontal. On prisente stpariment des resultats pour une 

temperature de paroi donnee et pour un panache adiabatique. 

KONVEKTIVE AUFTRIEBSSTRijMUNG AN EINER WAND: 
EINE ANALYSE HijHERER ORDNUNG 

Zusammenfassung- Fur maBig grol3e Grashof-Zahlen wird die natiirliche Konvektionsstrhmung, die von 
einer stationaren linienfiirmigen Warmequelle ausgeht, nach der Methode der angepaBten asymptotischen 
Entwicklung untersucht. Die Wlrmequelle sitzt dabei an der Vorderkante einer senkrechten Platte. 
Diskutiert werden die Grenzschichtgleichungen 1. und 2. Ordnung fiir den Fall, daR das Medium nach unten 
durch eine unendlich groBe horizontale FlPche begrenzt wird. Diese Flache wird in beliebigem Abstand 
unterhalb der konvektiven Wandanlaufst:omung angebracht. Numerische Losungen werden fur die beiden 
Medien Luft und Wasser erhalten. Es zeig! sich, daD die Struktur der erzwungenen Auftriebsstriimung sehr 
stark von der Lage der waagerechten Ebene abhlngig ist. Gesonderte Ergebnisse werden fur den Fall 

vorgegebener Wandtemperatur als such fur eine Auftriebsstromung bei adiabater Wand dargestellt. 
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CBOEO~HOKOHBEKTMBHA5i BOCXO,QRKtJAst CTPYIl HA CTEHKE. AHAJUf3 
C IlOMOIIJbIo CTAPIIIMX WEHOB PA3JIOlKEHMII 

AHHOTaUHn- MeTOROM CpaLUwBaeMbIx aCHh4nTOTH~eCKHX pa3JfOxeHHii npoBeneH0 BCCneLloBaHAe CBO- 

60JIHOXOHBeXTEiBHOTO TeYeHH(l, B03HBKaIOLUe~O OT CTaUEiOHapHOrO JIHHlefiHOrO HCTOYHIIKB TeIlJIa, 

3WteJlaHHOrO B IIepeAHlOolo KpOMKy BepTHKanbHOii IlOBepXHOCTH, npI4 yMepeHH0 6onbmex 3Ha'ieHHIIX 

Wicna @aCrOf$a. AHaJIki3EipyIoTCn ypaBHeH&iS ~Or~HWtHOrO CJIOR nepBor0 Ei BTOpOrO nOpSiaKa B 

cnysae, Koma BHB3y non KOHBeKTtiBHOii crpyefi Ha UpOII3BOJibHOM ~~CCT~XHUH noMeUlifefcR Heorpa- 

H~~eHHa~ rOpK3OHTaRbHa5i ROBepXHOCTb. nOJlyYeHb1 YKCJleHHMe peLUeHH% j3JISi ,4ByX XWfKOCT&, ~7 

~MeHHO:~~~ BOSfiyXa II BOilbl. nOKa3aH0,YTO Ha CTpyKTyPy KOHBeKT~BHO~ CTpyE Ha CTeHKe CWnbHOe 

BJlRIiHSie OKa3bIBaeT iIOJtO2K~HW rOp~3OHTa~~bHO~ FUIOCXOCTN. ~p~Be~eHb1 HeKOTOpble pe3y,,bTaTbI 

&-rSi CJlyYaSI 3aIKlHHOii TeMlle&?TypbiCTeHKH ~a~~a6aT~qeCKO~ KOHBeKTIlBHOii CTpyH Ha CTeHKe. 


